Федеральное государственное бюджетное учреждение науки Институт геохимии им. А.П. Виноградова Сибирского отделения Российской академии наук (ИГХ СО РАН)

ПРИНЯТО
Ученым советом ИГХ СО РАН
Протокол № _9_ от _____ 03.10.2013_
Председатель Ученого совета ИГХ СО РАН
член-корреспондент РАН В.С. Шацкий

ПРОГРАМ М А ВСТУПИТЕЛЬНЫХ ЭКЗАМЕНОВ В АСПИРАНТУРУ

01.04.07 «Физика конденсированного состояния»

Иркутск 2013 год

1. Силы связи в твердых телах

Электронная структура атомов. Химическая связь и валентность. Типы сил связи в конденсированном состоянии: ван-дер-ваальсова связь, ионная связь, ковалентная связь, металлическая связь.

Химическая связь и ближний порядок. Структура вещества с ненаправленным взаимодействием. Примеры кристаллических структур, отвечающих плотным упаковкам шаров: простая кубическая, ОЦК, ГЦК, ГПУ, структура типа CsCl, типа NaCl, структура типа перовскита CaTiO₃.

Основные свойства ковалентной связи. Структура веществ с ковалентными связями. Структура веществ типа селена. Гибридизация атомных орбиталей в молекулах и кристаллах. Структура типа алмаза и графита.

2. Симметрия твердых тел

Кристаллические и аморфные твердые тела. Трансляционная инвариантность. Базис и кристаллическая структура. Элементарная ячейка. Ячейка Вигнера – Зейтца. Решетка Браве. Обозначения узлов, направлений и плоскостей в кристалле. Обратная решетка, ее свойства. Зона Бриллюэна.

Элементы симметрии кристаллов: повороты, отражения, инверсия, инверсионные повороты, трансляции. Операции (преобразования) симметрии.

Элементы теории групп, группы симметрии. Возможные порядки поворотных осей в кристалле. Пространственные и точечные группы (кристаллические классы). Классификация решеток Браве.

3. Дефекты в твердых телах

Точечные дефекты, их образование и диффузия. Вакансии и межузельные атомы. Дефекты Френкеля и Шоттки.

Линейные дефекты. Краевые и винтовые дислокации. Роль дислокаций в пластической деформации.

4. Дифракция в кристаллах

Распространение волн в кристаллах. Дифракция рентгеновских лучей, нейтронов и электронов в кристалле. Упругое и неупругое рассеяние, их особенности.

Брэгговские отражения. Атомный и структурный факторы. Дифракция в аморфных веществах.

5. Колебания решетки

Колебания кристаллической решетки. Уравнения движения атомов. Простая и сложная одномерные цепочки атомов. Закон дисперсии упругих волн. Акустические и оптические колебания. Квантование колебаний. Фононы. Электрон-фононное взаимодействие.

6. Тепловые свойства твердых тел

Теплоемкость твердых тел. Решеточная теплоемкость. Электронная теплоемкость. Температурная зависимость решеточной и электронной теплоемкости.

Классическая теория теплоемкости. Закон равномерного распределения энергии по степеням свободы в классической физике. Границы справедливости классической теории.

Квантовая теория теплоемкости по Эйнштейну и Дебаю. Предельные случаи высоких и низких температур. Температура Дебая.

Тепловое расширение твердых тел. Его физическое происхождение. Ангармонические колебания.

Теплопроводность решеточная и электронная. Закон Видемана – Франца для электронной теплоемкости и теплопроводности.

7. Электронные свойства твердых тел

Электронные свойства твердых тел: основные экспериментальные факты. Проводимость, эффект Холла, термоЭДС, фотопроводимость, оптическое поглощение. Трудности объяснения этих фактов на основе классической теории Друде.

Основные приближения зонной теории. Граничные условия Борна – Кармана. Теорема Блоха. Блоховские функции. Квазиимпульс. Зоны Бриллюэна. Энергетические зоны.

Брэгговское отражение электронов при движении по кристаллу. Полосатый спектр энергии.

Приближение сильносвязанных электронов. Связь ширины разрешенной зоны с перекрытием волновых функций атомов. Закон дисперсии. Тензор обратных эффективных масс.

Приближение почти свободных электронов. Брэгговские отражения электронов.

Заполнение энергетических зон электронами. Поверхность Ферми. Плотность состояний. Металлы, диэлектрики и полупроводники. Полуметаллы.

8. Магнитные свойства твердых тел

Намагниченность и восприимчивость. Диамагнетики, парамагнетики и ферромагнетики. Законы Кюри и Кюри – Вейсса. Парамагнетизм и диамагнетизм электронов проводимости.

Природа ферромагнетизма. Фазовый переход в ферромагнитное состояние. Роль обменного взаимодействия. Точка Кюри и восприимчивость ферромагнетика.

Ферромагнитные домены. Причины появления доменов. Доменные границы (Блоха, Нееля).

Антиферромагнетики. Магнитная структура. Точка Нееля. Восприимчивость антиферромагнетиков. Ферримагнетики. Магнитная структура ферримагнетиков.

Спиновые волны, магноны.

Движение магнитного момента в постоянном и переменном магнитных полях. Электронный парамагнитный резонанс. Ядерный магнитный резонанс.

9. Оптические и магнитооптические свойства твердых тел

Комплексная диэлектрическая проницаемость и оптические постоянные. Коэффициенты поглощения и отражения. Соотношения Крамерса—Кронига.

Поглощения света в полупроводниках (межзонное, примесное поглощение, поглощение свободными носителями, решеткой). Определение основных характеристик полупроводника из оптических исследований.

Магнитооптические эффекты (эффекты Фарадея, Фохта и Керра).

Проникновение высокочастотного поля в проводник. Нормальный и аномальный скин-эффекты. Толщина скин-слоя.

10. Сверхпроводимость

Сверхпроводимость. Критическая температура. Высокотемпературные сверхпроводники. Эффект Мейснера. Критическое поле и критический ток.

Сверхпроводники первого и второго рода. Их магнитные свойства. Вихри Абрикосова. Глубина проникновения магнитного поля в образец.

Эффект Джозефсона.

Куперовское спаривание. Длина когерентности. Энергетическая щель.

Основная литература

Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978.

Ашкрофт Н., Мермин Н. Физика твердого тела. Т. I, II. М.: Мир, 1979.

Уэрт Ч., Томсон Р. Физика твердого тела. М.: Мир, 1969.

Займан Дж. Принципы теории твердого тела. М.: Мир, 1974.

Павлов П.В., Хохлов А.Ф. Физика твердого тела. М.: Высш. шк., 2000.

Вонсовский С.В. Магнетизм. М.: Наука, 1971.

Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М.: Наука, 1979.

Шмидт В.В. Введение в физику сверхпроводимости. МЦ НМО, М., 2000.

Ответственный за специальность: д.ф.-м.н. Е.А. Раджабов

Ученый секретарь: к.г.-м.н. И.Ю. Пархоменко